Large-Deviation Principle for Interacting Brownian Motions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Large Deviation Principle for a Brownian Immigration Particle System

We derive a large deviation principle for a Brownian immigration branching particle system, where the immigration is governed by a Poisson randommeasurewith a Lebesgue intensity measure.

متن کامل

A Large Deviation Principle for Martingales over Brownian Filtration

In this article we establish a large deviation principle for the family {ν ε : ε ∈ (0, 1)} of distributions of the scaled stochastic processes {P − log √ ε Z t } t≤1 , where (Z t) t∈[0,1] is a square-integrable martingale over Brownian filtration and (P t) t≥0 is the Ornstein-Uhlenbeck semigroup. The rate function is identified as well in terms of the Wiener-Itô chaos decomposition of the termi...

متن کامل

Large Deviation Principle for Non-Interacting Boson Random Point Processes

Limit theorems, including the large deviation principle, are established for random point processes (fields), which describe the position distributions of the perfect boson gas in the regime of the Bose-Einstein condensation. We compare these results with those for the case of the normal phase.

متن کامل

Boundary Harnack Principle for Subordinate Brownian Motions

We establish a boundary Harnack principle for a large class of subordinate Brownian motion, including mixtures of symmetric stable processes, in bounded κ-fat open set (disconnected analogue of John domains). As an application of the boundary Harnack principle, we identify the Martin boundary and the minimal Martin boundary of bounded κ-fat open sets with respect to these processes with their E...

متن کامل

A large deviation principle for Dirichlet posteriors

Let Xk be a sequence of independent and identically distributed random variables taking values in a compact metric space Ω, and consider the problem of estimating the law of X1 in a Bayesian framework. A conjugate family of priors for non-parametric Bayesian inference is the Dirichlet process priors popularized by Ferguson. We prove that if the prior distribution is Dirichlet, then the sequence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Mathematics

سال: 2016

ISSN: 0010-3640

DOI: 10.1002/cpa.21636